@pointlesswindows Either they are both on the same file, in which case a number suffices to tell them apart, or one is closer to the edge on the Queenside and the other is closer to the edge on the Kingside, so you can call one the King's Knight and the other the Queen's Knight. If that's unsatisfactory, then you can always just specify the square it stands on, e.g., KtQN5-B7 is the same as Nbc7.
The long-and-short of it is that descriptive notation is a notation for the squares, not the pieces, so ambiguities can always be dealt with by specifying squares, which is only slightly more inefficient than algebraic notation. The real inconvenience of descriptive is that the numbers have different meanings for Black and White. But it's just an inconvenience; fundamentally, the notation works.
@pointlesswindows Either they are both on the same file, in which case a number suffices to tell them apart, or one is closer to the edge on the Queenside and the other is closer to the edge on the Kingside, so you can call one the King's Knight and the other the Queen's Knight. If that's unsatisfactory, then you can always just specify the square it stands on, e.g., KtQN5-B7 is the same as Nbc7.
The long-and-short of it is that descriptive notation is a notation for the squares, not the pieces, so ambiguities can always be dealt with by specifying squares, which is only slightly more inefficient than algebraic notation. The real inconvenience of descriptive is that the numbers have different meanings for Black and White. But it's just an inconvenience; fundamentally, the notation works.
@pointlesswindows
"Another example: what if both knights can go to the same square and they've already moved a lot?"
Not a problem - you resolve the ambiguity through specifying the file or the rank. You might see N(B5)-B7 instead of the normal N-B7.
@pointlesswindows
"Another example: what if both knights can go to the same square and they've already moved a lot?"
Not a problem - you resolve the ambiguity through specifying the file or the rank. You might see N(B5)-B7 instead of the normal N-B7.
This is one of those religious arguments that goes nowhere.
I would think that most literate chessplayers are fluent in both systems. Each system has its own pros and cons.
I have plenty of books in descriptive - and I am reading one of them right now.
Nobody EVER talks about the third system : long algebraic.
I like long algebraic because it makes it easy to "undo" side variations to return to the main line, without having to find a diagram and restart from there.
This is one of those religious arguments that goes nowhere.
I would think that most literate chessplayers are fluent in both systems. Each system has its own pros and cons.
I have plenty of books in descriptive - and I am reading one of them right now.
Nobody EVER talks about the third system : long algebraic.
I like long algebraic because it makes it easy to "undo" side variations to return to the main line, without having to find a diagram and restart from there.
idk why we dont just use sq-sq
idk why we dont just use sq-sq
In using descriptive notation we never wrote (or said) KR-QN4; we just wrote R-QN4. That is, we didn't presume to know or care which rook it had originally been, as long as there was no ambiguity for the move in question. If there was, then a qualifier was used. In its full form it was the name of the square from the perspective of the side that was moving: RQN1-QN4; but it could be abbreviated: R(1)-QN4 or R(QN)-QN4.
I suspect that because symmetrical moves between White and Black had identical descriptive notations, I latched onto that symmetry as a way of organizing my mental image of the board, while accepting the more verbose and convoluted nature of the notation, compared to algebraic. If I had grown up with algebraic, I might well have thought of the board as independent of the pieces that move upon it.
If I had been asked, in those formative years, to develop a tidier notation than descriptive that maintained symmetry, I might have come up with an algebraic notation in which the a-file is where both sides' queen-side rooks start, but each side counts ranks 1-8 from their own side. So an Italian game might begin:
- e4, e4
- Nf3, Nc3
- Bc4, Bc4
Ah, well. Players who didn't grow up with a symmetrical notation probably don't see much value in it, understandably. It's water under the bridge and over the dam.
In using descriptive notation we never wrote (or said) KR-QN4; we just wrote R-QN4. That is, we didn't presume to know or care which rook it had originally been, as long as there was no ambiguity for the move in question. If there was, then a qualifier was used. In its full form it was the name of the square from the perspective of the side that was moving: RQN1-QN4; but it could be abbreviated: R(1)-QN4 or R(QN)-QN4.
I suspect that because symmetrical moves between White and Black had identical descriptive notations, I latched onto that symmetry as a way of organizing my mental image of the board, while accepting the more verbose and convoluted nature of the notation, compared to algebraic. If I had grown up with algebraic, I might well have thought of the board as independent of the pieces that move upon it.
If I had been asked, in those formative years, to develop a tidier notation than descriptive that maintained symmetry, I might have come up with an algebraic notation in which the a-file is where both sides' queen-side rooks start, but each side counts ranks 1-8 from their own side. So an Italian game might begin:
1. e4, e4
2. Nf3, Nc3
3. Bc4, Bc4
Ah, well. Players who didn't grow up with a symmetrical notation probably don't see much value in it, understandably. It's water under the bridge and over the dam.
By the way Queen‘s Gambit is using descriptive notation in the original and algebraic in German.
Today it‘s like measuring long jump in foots & inches. It is hopelessly outdated. Mega drawbacks and microscopic advantages.
By the way Queen‘s Gambit is using descriptive notation in the original and algebraic in German.
Today it‘s like measuring long jump in foots & inches. It is hopelessly outdated. Mega drawbacks and microscopic advantages.
I think it would've been fine if they just didn't use the same perspective for both sides (P-K4 P-K4 ❌ P-K4 P-K5 ✔️)
Still glad they changed it, talking sentences for blindfold back then must have sucked.
I think it would've been fine if they just didn't use the same perspective for both sides (P-K4 P-K4 ❌ P-K4 P-K5 ✔️)
Still glad they changed it, talking sentences for blindfold back then must have sucked.
@only_tactics LOL! The symmetric perspective was the main thing I liked about it! In other respects I have to agree that algebraic is equal or better.
@only_tactics LOL! The symmetric perspective was the main thing I liked about it! In other respects I have to agree that algebraic is equal or better.