FEN
[Event "casual classical game"]
[Site "https://lichess.org/gGnm029V"]
[Date "2023.12.25"]
[Round "-"]
[White "CodingMaster"]
[Black "jhshin0719"]
[Result "1/2-1/2"]
[GameId "gGnm029V"]
[UTCDate "2023.12.25"]
[UTCTime "16:30:15"]
[WhiteElo "1482"]
[BlackElo "1689"]
[Variant "Standard"]
[TimeControl "1800+15"]
[ECO "B01"]
[Opening "Scandinavian Defense"]
[Termination "Normal"]
[Annotator "lichess.org"]
1. e4 { [%eval 0.2] } 1... d5?! { (0.20 → 0.82) Inaccuracy. e5 was best. } { [%eval 0.82] } { B01 Scandinavian Defense } (1... e5 2. Nf3 Nc6 3. Bb5 Nf6 4. O-O Nxe4 5. Re1 Nd6 6. Nxe5) 2. Nc3? { (0.82 → -0.31) Mistake. exd5 was best. } { [%eval -0.31] } (2. exd5 Qxd5 3. Nc3 Qa5 4. d4 Nf6 5. Nf3 Bf5 6. Bd2 c6) 2... d4 { [%eval 0.0] } 3. Nce2 { [%eval -0.37] } 3... e5 { [%eval -0.25] } 4. Nf3 { [%eval -0.62] } 4... Nc6 { [%eval -0.32] } 5. Ng3 { [%eval -0.68] } 5... Nf6?! { (-0.68 → 0.30) Inaccuracy. h5 was best. } { [%eval 0.3] } (5... h5 6. h3 h4 7. Ne2 Be6 8. d3 Qd6 9. Bd2 Nge7 10. Nc1) 6. Bb5 { [%eval 0.35] } 6... Bd7 { [%eval 0.87] } 7. Bxc6 { [%eval 0.61] } 7... Bxc6 { [%eval 0.76] } 8. Nxe5 { [%eval 0.76] } 8... Bxe4 { [%eval 0.92] } 9. Nxe4 { [%eval 0.83] } 9... Nxe4 { [%eval 0.91] } 10. Qe2?! { (0.91 → -0.17) Inaccuracy. Qf3 was best. } { [%eval -0.17] } (10. Qf3) 10... Qd5 { [%eval -0.07] } 11. Nf3 { [%eval -0.25] } 11... O-O-O { [%eval -0.27] } 12. O-O { [%eval -0.26] } 12... Bd6 { [%eval -0.18] } 13. d3 { [%eval -0.35] } 13... Nf6 { [%eval -0.02] } 14. Bg5 { [%eval -0.08] } 14... Rhe8 { [%eval -0.06] } 15. Qd2 { [%eval -0.03] } 15... Re6 { [%eval 0.18] } 16. Rfe1 { [%eval 0.19] } 16... Rde8?! { (0.19 → 0.97) Inaccuracy. Rxe1+ was best. } { [%eval 0.97] } (16... Rxe1+ 17. Nxe1) 17. Bxf6 { [%eval 1.04] } 17... gxf6 { [%eval 0.97] } 18. c3? { (0.97 → -0.14) Mistake. Rxe6 was best. } { [%eval -0.14] } (18. Rxe6 fxe6) 18... dxc3 { [%eval -0.05] } 19. bxc3 { [%eval -0.08] } 19... Qh5 { [%eval 0.18] } 20. Rxe6 { [%eval 0.06] } 20... Rxe6 { [%eval 0.28] } 21. h3 { [%eval 0.34] } 21... f5 { [%eval 0.77] } 22. Nd4?! { (0.77 → 0.21) Inaccuracy. c4 was best. } { [%eval 0.21] } (22. c4 f4) 22... Rg6 { [%eval 0.56] } 23. Nb5? { (0.56 → -1.06) Mistake. Qe3 was best. } { [%eval -1.06] } (23. Qe3 Kd7 24. Rb1 Rg8 25. Kf1 a6 26. c4 Kc8 27. Nf3 b6 28. Qd4 f4 29. Re1 Kb8) 23... Qxh3 { [%eval -1.17] } 24. Nxd6+ { [%eval -1.11] } 24... cxd6 { [%eval -1.16] } 25. f3?! { (-1.16 → -2.02) Inaccuracy. f4 was best. } { [%eval -2.02] } (25. f4 Qg3) 25... Qxf3 { [%eval -1.91] } 26. Rf1 { [%eval -1.82] } 26... Qd5 { [%eval -1.82] } 27. c4 { [%eval -2.06] } 27... Qd4+ { [%eval -2.11] } 28. Rf2 { [%eval -2.69] } 28... h5 { [%eval -2.71] } 29. Kf1?! { (-2.71 → -3.96) Inaccuracy. Qa5 was best. } { [%eval -3.96] } (29. Qa5 Rf6) 29... Qa1+?! { (-3.96 → -2.98) Inaccuracy. h4 was best. } { [%eval -2.98] } (29... h4 30. Rf4 Qa1+ 31. Qe1 Qxe1+ 32. Kxe1 Rxg2 33. Rxh4 Kd7 34. a4 Ra2 35. Rh7 Ke7 36. Rh5) 30. Ke2? { (-2.98 → -5.02) Mistake. Qe1 was best. } { [%eval -5.02] } (30. Qe1 Qxe1+) 30... Re6+ { [%eval -5.22] } 31. Kf3 { [%eval -5.1] } 31... Qd4?! { (-5.10 → -4.00) Inaccuracy. h4 was best. } { [%eval -4.0] } (31... h4 32. Re2 Qf1+ 33. Rf2 Qh1 34. Re2 h3 35. Rxe6 fxe6 36. a4 h2 37. Qh6 Qf1+ 38. Kg3) 32. Re2 { [%eval -4.48] } 32... Qg4+ { [%eval -4.09] } 33. Kf2 { [%eval -4.36] } 33... Rxe2+ { [%eval -4.67] } 34. Qxe2 { [%eval -4.68] } 34... Qxe2+ { [%eval -4.1] } 35. Kxe2 { [%eval -4.41] } 35... Kd7 { [%eval -4.3] } 36. Ke3 { [%eval -4.16] } 36... Ke6 { [%eval -4.21] } 37. Kf4 { [%eval -4.61] } 37... Kf6 { [%eval -4.41] } 38. a4 { [%eval -5.09] } 38... a5 { [%eval -5.18] } 39. d4 { [%eval -5.63] } 39... b6 { [%eval -5.57] } 40. g3 { [%eval -6.17] } 40... Kg6 { [%eval -6.31] } 41. Ke3 { [%eval -6.56] } 41... Kf6 { [%eval -5.96] } 42. Kf4 { [%eval -5.94] } 42... Kg6 { [%eval -6.23] } 43. Ke3 { [%eval -6.5] } 43... Kg5 { [%eval -6.71] } 44. Kf3 { [%eval -6.63] } 44... Kf6?? { (-6.63 → 0.00) Blunder. f4 was best. } { [%eval 0.0] } (44... f4 45. gxf4+ Kf5 46. Ke3 h4 47. Kf3 h3 48. Kg3 h2 49. c5 bxc5 50. dxc5 dxc5 51. Kxh2) 45. Kf4 { [%eval -5.85] } { The game is a draw. } 1/2-1/2